National Repository of Grey Literature 6 records found  Search took 0.00 seconds. 
Analysis of functional interaction between PKN3 kinase and CARMIL1 protein
Novotná, Petra ; Rösel, Daniel (advisor) ; Groušl, Tomáš (referee)
Cancer cell motility and cytoskeletal rearrangements are crucial for metastasis formation. These complex changes involve multiple cellular processes affected by many different proteins. One such protein is the Ser/Thr kinase PKN3. This kinase has been shown to be essential for metastasis formation in some aggressive types of breast and prostate cancer. Interestingly, the PKN3 kinase is not only important in malignant cancers but also in normal tissues. In endothelial cells, the PKN3 kinase can alter their adhesion, or in osteoclasts it helps to promote bone resorption. The effects of the PKN3 kinase on cancer malignancy and cell motility are well documented, but the mechanism behind these effects is still unclear. Therefore, our laboratory seeks to identify novel substrates and interaction partners of the PKN3 kinase. This work focuses on a novel potential substrate of the PKN3 kinase, CARMIL1. This protein is involved in actin cytoskeleton rearrangements by regulating actin polymerisation and thus cell motility. Here we provide evidence that the PKN3 kinase interacts with CARMIL1. Key words: PKN3, CARMIL1, actin cytoskeleton, cancer, invasion
The search for novel interaction partners of SH3 domain of an adaptor protein p130Cas
Gemperle, Jakub ; Rösel, Daniel (advisor) ; Forstová, Jitka (referee)
Protein p130Cas is the major tyrosine phosphorylated protein in cells transformed by v-crk and v-src oncogenes. P130Cas plays an important role in invasiveness and metastasis of Src-transformed cells. In breast cancer patients, high p130Cas levels are associated with higher recurrence of disease, poor response to tamoxifen treatment and lower overall survival. In non-transformed cells, after the stimulation of integrins, protein p130Cas is phosphorylated in substrate domain affecting cell migration and cytoskeletal dynamics. For this signalling is the SH3 domain of p130Cas indispensable. In this thesis, was for the first time using the Phage display method analysed and subsequently characterized the binding motif of SH3 domain of p130Cas. Based on this high-affinity motif [AP]-P-[APMS]-K-P-[LPST]-[LR]- [LPST], we predicted new interaction partners of protein p130Cas and subsequently confirmed the interaction with the Ser/Thr kinase PKN3. This kinase colocalizes with p130Cas in the nucleus and perinuclear region and could phosphorylate p130Cas. In this thesis, we also analysed the effect of phosphomimicking mutation of tyrosine from sequence ALYD, which is conserved in the sequence of SH3 domains, on ability of these domains to bind ligands. This mutation reduced binding by about 3 orders of...
Analyzing the role of the p130Cas SH3 domain in p130Cas-mediated signaling
Gemperle, Jakub ; Rösel, Daniel (advisor) ; Vomastek, Tomáš (referee) ; Truksa, Jaroslav (referee)
The adaptor protein p130Cas (CAS, BCAR1) represents a nodal signaling platform for integrin and growth factor receptor signaling, and influences normal development and tissue homeostasis. Its altered expression drives many pathological conditions including tumor growth, metastasis and drug resistance in many cancer types. How p130Cas contributes to many of these pathologies is still poorly understood. Therefore, the overall aim of my PhD work was to provide new insights to p130Cas signaling and its regulation. The SH3 domain is indispensable for p130Cas signaling, but the ligand binding characteristics of the p130Cas SH3 domain, and the structural determinants of its regulation were not well understood. To be able to study various aspects of p130Cas signaling we identified an atypical binding motif in p130Cas SH3 domain by establishing collaborations with Dr Veverka (Structural biology) and Dr Lepšík (Computational biochemistry; Academy of Sciences, CZ) which gave new insight into this binding interface. Through these collaborations I generated chimeras of p130Cas SH3 domain with its ligands for structural NMR analysis and learned how to visualize and analyze structures. Furthermore, my work expanded our knowledge of p130Cas SH3 ligand binding regulation and led to a novel model of Src-p130Cas- FAK...
Analyzing the role of the p130Cas SH3 domain in p130Cas-mediated signaling
Gemperle, Jakub ; Rösel, Daniel (advisor) ; Vomastek, Tomáš (referee) ; Truksa, Jaroslav (referee)
The adaptor protein p130Cas (CAS, BCAR1) represents a nodal signaling platform for integrin and growth factor receptor signaling, and influences normal development and tissue homeostasis. Its altered expression drives many pathological conditions including tumor growth, metastasis and drug resistance in many cancer types. How p130Cas contributes to many of these pathologies is still poorly understood. Therefore, the overall aim of my PhD work was to provide new insights to p130Cas signaling and its regulation. The SH3 domain is indispensable for p130Cas signaling, but the ligand binding characteristics of the p130Cas SH3 domain, and the structural determinants of its regulation were not well understood. To be able to study various aspects of p130Cas signaling we identified an atypical binding motif in p130Cas SH3 domain by establishing collaborations with Dr Veverka (Structural biology) and Dr Lepšík (Computational biochemistry; Academy of Sciences, CZ) which gave new insight into this binding interface. Through these collaborations I generated chimeras of p130Cas SH3 domain with its ligands for structural NMR analysis and learned how to visualize and analyze structures. Furthermore, my work expanded our knowledge of p130Cas SH3 ligand binding regulation and led to a novel model of Src-p130Cas- FAK...
Crosstalk of PKN3 and p130Cas/BCAR1 signaling
Dibus, Michal ; Rösel, Daniel (advisor) ; Voller, Jiří (referee)
Both p130Cas and PKN3 are important regulators of cellular signaling deregulation of which leads to malignant behavior of cancer cells. Recently we have found that SH3 domain of p130Cas mediates interaction with proline rich region of PKN3 suggesting their possible cooperation in regulation of these processes. In this work we have focused on the phosphorylation of p130Cas by PKN3 and identified serine 498 (S498) within the serine rich domain of p130Cas to be phosphorylated by PKN3 in vitro. Given that S498 is localized within the 14-3-3 binding motif and its phosphorylation is required for interaction of p130Cas with 14-3-3 proteins, we propose potential existence of novel PKN3/p130Cas/14-3-3 signaling axis. In the second part of the work we have studied this pathway in response to antiestrogen treatment in estrogen receptor positive breast cancer cell line MCF7. Although we have shown inactivation of PKN3 occurs as an early response to tamoxifen treatment, we do not rule out its possible role in further promotion of resistance to antiestrogens. Furthermore, understanding the signaling triggered by interaction of PKN3 with p130Cas and its possible downstream effects on promoting malignant growth of cancer cells would help in finding novel therapeutic targets.
The search for novel interaction partners of SH3 domain of an adaptor protein p130Cas
Gemperle, Jakub ; Rösel, Daniel (advisor) ; Forstová, Jitka (referee)
Protein p130Cas is the major tyrosine phosphorylated protein in cells transformed by v-crk and v-src oncogenes. P130Cas plays an important role in invasiveness and metastasis of Src-transformed cells. In breast cancer patients, high p130Cas levels are associated with higher recurrence of disease, poor response to tamoxifen treatment and lower overall survival. In non-transformed cells, after the stimulation of integrins, protein p130Cas is phosphorylated in substrate domain affecting cell migration and cytoskeletal dynamics. For this signalling is the SH3 domain of p130Cas indispensable. In this thesis, was for the first time using the Phage display method analysed and subsequently characterized the binding motif of SH3 domain of p130Cas. Based on this high-affinity motif [AP]-P-[APMS]-K-P-[LPST]-[LR]- [LPST], we predicted new interaction partners of protein p130Cas and subsequently confirmed the interaction with the Ser/Thr kinase PKN3. This kinase colocalizes with p130Cas in the nucleus and perinuclear region and could phosphorylate p130Cas. In this thesis, we also analysed the effect of phosphomimicking mutation of tyrosine from sequence ALYD, which is conserved in the sequence of SH3 domains, on ability of these domains to bind ligands. This mutation reduced binding by about 3 orders of...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.